Math 5C Discussion Problems 2 Selected Solutions

Path Independence

1. Let C be the striaght-line path in \mathbb{R}^{2} from the origin to $(3,1)$. Define $f(x, y)=x y e^{x y}$.
(a) Evaluate $\int_{C} \nabla f \cdot d \mathbf{r}$.

Solution. $\int_{C} \nabla f \cdot d \mathbf{r}=f(3,1)-f(0,0)=3 e^{3}$.
(b) Evaluate $\int_{C}((1,0)+\nabla f) \cdot d \mathbf{r}$.

Solution. $\int_{C}((1,0)+\nabla f) \cdot d \mathbf{r}=\int_{C} \nabla(x) \cdot d \mathbf{r}+3 e^{3}=3+3 e^{3}$.
(c) Evaluate $\int_{C}((y, 0)+\nabla f) \cdot d \mathbf{r}$.

Solution. $\int_{C}((y, 0)+\nabla f) \cdot d \mathbf{r}=\int_{0}^{1} 3 t d t+3 e^{3}=\frac{3}{2}+3 e^{3}$.
3. For each of the following vector fields, determine whether it is the gradient of a function.
(a) $\left(4 x^{2}-4 y^{2}+x, 7 x y+\ln y\right)$ on \mathbb{R}^{2}

Solution. No, because $\frac{\partial}{\partial y}\left(4 x^{2}-4 y^{2}+x\right) \neq \frac{\partial}{\partial x}(7 x y+\ln y)$.
4. For each of the following, find the function f.
(a) $f(0,0,0)=0$ and $\nabla f=(x, y, z)$

Solution. For any C from $(0,0,0)$ to (x, y, z), we have $f(x, y, z)=f(0,0,0)+\int_{C} \nabla f \cdot d \mathbf{r}$. Take $\mathbf{r}(t)=(x t, y t, z t), 0 \leq t \leq 1$ to get $f(x, y, z)=0+\int_{0}^{1}(x t, y t, z t) \cdot(x, y, z) d t=(1 / 2)\left(x^{2}+y^{2}+z^{2}\right)$.
6. Let C be a curve in \mathbb{R}^{2} given by $\mathbf{r}(t)=\left(\cos ^{5} t, \sin ^{3} t, t^{4}\right)$, where $0 \leq t \leq \pi$. Evaluate $\int_{C}(y z, x z, x y) \cdot d \mathbf{r}$.

Solution. Note that $(y z, z x, x y)=\nabla(x y z)$. The endpoints are $(1,0,0)$ and $\left(-1,0, \pi^{4}\right)$, so the integral is $(-1)(0)\left(\pi^{4}\right)-(1)(0)(0)=0$.

Green's Theorem

1. Let D be the unit disk centered at the origin in \mathbb{R}^{2}.
(a) $\oint_{\partial D} d x+x d y=\pi$.
(b) $\oint_{\partial D} \arctan \left(e^{\sin x}\right) d x+y d y=0$.
(c) $\oint_{\partial D}\left(x^{3}-y^{3}\right) d x+\left(x^{3}+y^{3}\right) d y=\iint_{D} 3\left(x^{2}+y^{2}\right) d A=\frac{3 \pi}{2}$.
(d) $\oint_{\partial D} \frac{\partial f}{\partial y} d x-\frac{\partial f}{\partial x} d y=0$, given that $f_{x x}+f_{y y}=0$.
2. Find the area of the following regions in \mathbb{R}^{2} using Green's theorem.

Hint. Use the formulas

$$
\operatorname{area}(R)=\oint_{\partial R} y d x=\oint_{\partial R}-x d y=\frac{1}{2} \oint_{\partial R}-x d y+y d x
$$

4. Let f be a smooth function and D be a disk in \mathbb{R}^{2} with outward unit normal \mathbf{n}. For points on ∂D, denote $\partial f / \partial n$ to mean the directional derivative of f in the direction of \mathbf{n}. Prove that

$$
\oint_{\partial D} \frac{\partial f}{\partial n} d s=\iint_{D} \Delta f d A
$$

Hint. Notice that $\partial f / \partial n=\nabla f \cdot \mathbf{n}$. Use the normal form of Green's theorem.
5. Prove the identity $\oint_{\partial D} f \nabla f \cdot \mathbf{n} d s=\iint_{D}\left(f \Delta f+\|\nabla f\|^{2}\right) d A$.

Hint. Remember that $\|u\|^{2}=u \cdot u$. Use the normal form of Green's theorem and a product rule.

Divergence Theorem

1. In each of the following situations, evaluate $\iint_{\partial R} \mathbf{F} \cdot d \mathbf{A}$. Assume ∂R is outward oriented.
(a) Let R be the unit ball centered at the origin and $\mathbf{F}=(x, 2 y, 3 z)$.

Solution. By the divergence theorem, $\iint_{\partial R} \mathbf{F} \cdot d \mathbf{A}=\iiint_{R} \nabla \cdot \mathbf{F} d V=\iiint_{R} 6 d V=8 \pi$.
2. Let S_{1} be the disk $x^{2}+y^{2} \leq 1, z=1$, oriented upward. Let S_{2} be the cone $x^{2}+y^{2}=z^{2}, 0 \leq z \leq 1$, oriented downward. Together, S_{1} and S_{2} enclose a region R. Define $\mathbf{F}=\left(x+e^{y}, y+\cos x, z\right)$.
(a) Find the flux of \mathbf{F} across S_{1} directly.
(b) Integrate $\nabla \cdot \mathbf{F}$ over R.
(c) With no extra computation, find the flux of \mathbf{F} across S_{2}. Do you see how this problem could be generalized?

Solution. On S_{1}, the unit normal is $(0,0,1)$ and $\mathbf{F}=\left(x+e^{y}, y+\cos x, 1\right)$, so the flux is

$$
\iint_{S_{1}} \mathbf{F} \cdot d \mathbf{A}=\iint_{S_{1}}\left(x+e^{y}, y+\cos x, 1\right) \cdot(0,0,1) d \sigma=\iint_{S_{1}} d \sigma=\pi .
$$

Since $\nabla \cdot \mathbf{F}=2$, using the volume of a cone gives

$$
\iiint_{R} \nabla \cdot \mathbf{F} d V=\iiint_{R} 2 d V=2(1 / 3) \pi(1)(1)^{2}=\frac{2 \pi}{3} .
$$

Finally, since $\partial R=S_{1} \cup S_{2}$, the divergence theorem gives

$$
\iint_{S_{2}} \mathbf{F} \cdot d \mathbf{A}=\iiint_{R} \nabla \cdot \mathbf{F} d V-\iint_{S_{1}} \mathbf{F} \cdot d \mathbf{A}=-\frac{\pi}{3} .
$$

3. In each of the following, use the method of the previous problem to find the flux of \mathbf{F} across S.
(a) Let S be the hemisphere $x^{2}+y^{2}+z^{2}=9, z \geq 0$, outwardly oriented. Assume $\mathbf{F}=\left(x^{2}, 0,2 z\right)$.

Answer. 36π
(b) Let S be the cone $z=4-\sqrt{x^{2}+y^{2}}, z \geq 0$, oriented upward. Assume $\mathbf{F}=(x y, y z, x z)$.

Answer. $64 \pi / 3$
4. Hint. For all of these, use the divergence theorem and product rules.
5. Standard integration by parts is proved using the product rule. But there are many different product rules; each gives a different integration by parts.
(b) Now let D be the unit ball centered at the origin. Evaluate

$$
\iiint_{D} e^{-\sqrt{x^{2}+y^{2}+z^{2}}} \nabla \cdot\left(\frac{(x, y, z)}{\left(x^{2}+y^{2}+z^{2}\right)^{3 / 2}}\right) d V .
$$

You can ignore the singularities at the origin (this could be made rigorous).
Answer. 4π

Stokes' Theorem

1. In each of the following situations, evaluate $\iint_{S} \nabla \times \mathbf{F} \cdot d \mathbf{A}$.
(a) Let S be the upper half $(z \geq 0)$ of the sphere $x^{2}+y^{2}+z^{2}=1$, oriented upward, and $\mathbf{F}=\left(x, x z, y e^{\cos y}\right)$.

Solution. Note that ∂S is the unit circle (positively oriented) in \mathbb{R}^{2} centered at the origin. On ∂S, $\mathbf{F}=\left(x, 0, y e^{\cos y}\right)$ and $d \mathbf{r}=(d x, d y, 0)$, so $\mathbf{F} \cdot d \mathbf{r}=x d x$. Notice that $(x, 0,0)$ is path-independent; thus Stokes' theorem gives

$$
\iint_{S} \nabla \times \mathbf{F} \cdot d \mathbf{A}=\oint_{\partial S} \mathbf{F} \cdot d \mathbf{r}=\oint_{\partial S} x d x=0
$$

2. Let C be the interesection of a (nonvertical) plane and the cylinder $x^{2}+y^{2}=4$ in \mathbb{R}^{3}. Show that

$$
\oint_{C}(2 x-y) d x+(2 y+x) d y=8 \pi .
$$

Hint. Note that $\nabla \times(2 x-y, 2 y+x, 0)=(0,0,2)$. Use Stokes theorem.
4. Hint. Use Stokes theorem and product rules. Don't forget that the cross product is anti-commutative: $a \times b=-b \times a$. Also, the curl of a gradient is zero.
5. Standard integration by parts is proved using the product rule. But there are many different product rules; each gives a different integration by parts.
(a) Let S be a smooth oriented surface with boundary ∂S. Given a smooth vector field \mathbf{G} and a smooth scalar function f, show that

$$
\iint_{S} f(\nabla \times \mathbf{G}) \cdot d \mathbf{A}=-\iint_{S}(\nabla f \times \mathbf{G}) \cdot d \mathbf{A}+\oint_{\partial S} f \mathbf{G} \cdot d \mathbf{r}
$$

(b) Now let S be the cone $z=\sqrt{x^{2}+y^{2}}, 0 \leq z \leq 1$, oriented downward. Define $\mathbf{G}=\left(-y, x, \arctan (x y z) e^{x^{2}}\right)$ and evaluate

$$
\iint_{S} z^{2}(\nabla \times \mathbf{G}) \cdot d \mathbf{A}
$$

(c) (Harder) Recall the identity $\mathbf{u} \cdot(\mathbf{v} \times \mathbf{w})=\mathbf{w} \cdot(\mathbf{u} \times \mathbf{v})$. Prove the vector equation

$$
\iint_{S} \nabla f \times d \mathbf{A}=-\oint_{\partial S} f d \mathbf{r} .
$$

Hint, etc. Use the product rule for the first part. The answer to the second part is π (you can use the previous part or the divergence theorem-try both!) For the final part, note that vectors a and b are equal if and only if $a \cdot v=b \cdot v$ for all arbitrary vectors v. Take \mathbf{G} in the first part to be an arbitrary constant vector field \mathbf{c} and play around.

Sequences and Series

1. Find the limit of the following sequences.
(a) $a_{n}=\ln n / n \rightarrow 0$
(b) $a_{n}=(1-2 / n)^{3 n} \rightarrow e^{-6}$
(c) $a_{n}=\sqrt{n^{2}+3 n}-n \rightarrow 3 / 2$
2. Given the sequence $\left(a_{n}\right)$:

$$
\sqrt{1}, \sqrt{1+\sqrt{1}}, \sqrt{1+\sqrt{1+\sqrt{1}}}, \sqrt{1+\sqrt{1+\sqrt{1+\sqrt{1}}}}, \ldots
$$

show that $a_{n+1}^{2}-1=a_{n}$. Given that the limit of the sequence exists, use this formula to find it.
Hint. Calling the limit L, we have $L^{2}-1=L$.
3. Evaluate the following series.
(a) $\sum_{n=0}^{\infty} \frac{2^{3 n}}{3^{2 n}}=8$
(b) $1+\sin ^{2} \theta+\sin ^{4} \theta+\sin ^{6} \theta+\cdots=\sec ^{2} \theta$, where $0<\theta<\pi / 2$
(c) $\frac{14}{15}+\frac{28}{75}+\frac{56}{375}+\frac{112}{1875}+\cdots=\frac{14}{9}$
4. Evaluate the following series. (These all telescope)
(a) $\frac{1}{1 \cdot 2}+\frac{1}{2 \cdot 3}+\frac{1}{3 \cdot 4}+\cdots=1$ (use partial fractions)
(b) $\sum_{n=1}^{\infty} \frac{\sqrt{n+1}-\sqrt{n}}{\sqrt{n^{2}+n}}=1$
(c) $\sum_{n=1}^{\infty} \ln \left(\frac{n(n+2)}{(n+1)^{2}}\right)=-\ln 2$
(d) $\sum_{n=0}^{\infty} \arctan (n+1)-\arctan (n)=\frac{\pi}{2}$
(e) $\sum_{n=1}^{\infty} \frac{1}{n \sqrt{n+1}+(n+1) \sqrt{n}}=1$
5. A difficult series to evaluate is $\sum_{n=1}^{\infty} \frac{1}{n^{2}}=\frac{\pi^{2}}{6}$. Use this fact to evaluate the following.
(a) $\frac{1}{2^{2}}+\frac{1}{4^{2}}+\frac{1}{6^{2}}+\cdots=\frac{\pi^{2}}{24}$
(b) $1+\frac{1}{3^{2}}+\frac{1}{5^{2}}+\frac{1}{7^{2}}+\cdots=\frac{\pi^{2}}{8}$
(c) $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n^{2}}=-\frac{\pi^{2}}{12}$

Convergence of Series

1. Determine the convergence of the following series.
(a) $\sum \frac{\sqrt{n}}{n^{2}} \quad$ converges by p-series
(b) $\sum \frac{\sqrt{n}}{1+n^{2}} \quad$ converges by comparison to p-series
(c) $\sum\left(1+\frac{1}{n}\right)^{-n} \quad$ diverges since terms do not tend to 0
(d) $\sum\left(1-\frac{1}{n}\right)^{n^{2}} \quad$ converges by root test
(e) $\sum \sin (1 / n)$ diverges by limit comparison to harmonic series
(f) $\sum n^{2} e^{-n^{3}} \quad$ converges by ratio or root or integral or \ldots
(g) $\sum \frac{\arctan n}{n^{2}} \quad$ converges by comparison to Euler's series
(h) $\sum \frac{1}{\sqrt{n+1}+\sqrt{n}} \quad$ diverges by comparison to p -series or by telescoping
(i) $\sum \frac{k^{-1 / 2}}{1+\sqrt{k}} \quad$ diverges by comparison to harmonic series
(j) $\sum\left[\left(\frac{n+1}{n}\right)^{n+1}-\left(\frac{n+1}{n}\right)\right]^{-n} \quad$ converges by root test
2. Determine whether each series converges absolutely, conditionally, or not at all.
(a) $\sum \frac{(-1)^{n}}{n \ln n} \quad$ conditionally, not absolutely
(b) $\sum \frac{(-4)^{n}}{n^{2}} \quad$ diverges
(c) $\sum \frac{\cos (n \pi)}{n} \quad$ conditionally, not absolutely
3. Use the error bound in the alternating series test to approximate, within 2 decimal place accuracy, the following values. The exact value of each series is given only as trivia.
(a) $\sin 1=1-\frac{1}{3!}+\frac{1}{5!}-\frac{1}{7!}+\cdots$
(b) $\cos (1 / 2)=1-\frac{(1 / 2)^{2}}{2!}+\frac{(1 / 2)^{4}}{4!}-\frac{(1 / 2)^{6}}{6!}+\cdots$
4. Suppose we want to approximate $\ln 2$ with 2 digits of accuracy. If we use the alternating series test,
(a) How many terms of $\ln 2=\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n}$ are needed?
(b) How many terms of $\ln 2=\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n 2^{n}}$ are needed?

Hint. We want the first n for which $\left|a_{n+1}\right|<0.005$.

Series: Miscellaneous

1. Define $S=1+2 / 3+3 / 3^{2}+4 / 3^{3}+5 / 3^{4}+\cdots$.
(a) Show that the series converges.
(b) Write out a series for $3 S$.
(c) Substract the given equation from the one you just wrote.
(d) Evaluate S using the previous part.

Hint. Use the ratio test. Follow the steps to get $S=9 / 4$.
2. There is a constant γ, called the Euler-Mascheroni constant, so that

$$
\sum_{k=1}^{n} \frac{1}{k}=\ln n+\gamma+\epsilon_{n}
$$

where $\epsilon_{n} \rightarrow 0$ when $n \rightarrow \infty$. Use this fact to answer the following.
(a) Use the above formula to show that $\sum(1 / n)$ diverges.
(b) Evaluate $\lim _{n \rightarrow \infty}\left(\frac{1}{n+1}+\frac{1}{n+2}+\cdots+\frac{1}{2 n}\right)$.

Solution. First, $\sum_{0}^{\infty} 1 / n=\gamma+\lim _{N} \ln N=\infty$. Second,

$$
\begin{aligned}
\frac{1}{n+1}+\frac{1}{n+2}+\cdots+\frac{1}{2 n} & =\sum_{k=1}^{2 n} \frac{1}{k}-\sum_{k=1}^{n} \frac{1}{k} \\
& =\ln (2 n)+\gamma+\epsilon_{2 n}-\ln n-\gamma-\epsilon_{n} \\
& =\ln 2+\epsilon_{2 n}-\epsilon_{n} \\
& \rightarrow \ln 2
\end{aligned}
$$

as $n \rightarrow \infty$.
5. The Fibonacci numbers form a sequence F_{n}, where $F_{1}=F_{2}=1$ and $F_{n+2}=F_{n}+F_{n+1}$ for all integers n.
(a) Use telescoping to evaluate $\sum_{n=1}^{\infty} \frac{F_{n-1}}{F_{n} F_{n+1}}$.
(b) It turns out that (amazingly)

$$
F_{n}=\frac{1}{\sqrt{5}}\left(\frac{1+\sqrt{5}}{2}\right)^{n}-\frac{1}{\sqrt{5}}\left(\frac{1-\sqrt{5}}{2}\right)^{n}
$$

Does $\sum F_{n}^{-1}$ converge?
Solution. Rewrite $F_{n-1}=F_{n+1}-F_{n}$ and telescope to get a sum of 1. Using limit comparison to the geometric series $\sum(2 /(1+\sqrt{5}))^{n}$ to see that the second series converges.
3. In 1914, Ramanujan proved that

$$
\frac{1}{\pi}=\frac{\sqrt{8}}{9801} \sum_{n=0}^{\infty} \frac{(4 k)!(1103+26,390 k)}{(k!)^{4} 396^{4 k}}
$$

This converges by the ratio test.

